127 research outputs found

    Structural Correlates of Taste and Smell Loss in Encephalitis Disseminata

    Get PDF
    BACKGROUND: Olfactory dysfunction in MS patients is reported in the literature. MRI of the olfactory bulb (OB) is discussed as a promising new testing method for measuring olfactory function (OF). Aim of this study was to explore reasons for and optimize the detection of olfactory dysfunction in MS patients with MRI. MATERIALS AND METHODS: OB and olfactory brain volume was assessed within 34 MS patients by manual segmentation. Olfactory function was tested using the Threshold-Discrimination-Identification-Test (TDI), gustatory function was tested using Taste Strips (TST). RESULTS: 41% of the MS patients displayed olfactory dysfunction (8% of the control group), 16% displayed gustatory dysfunction (5% of the control group). There was a correlation between the OB volume and the number and volume of MS lesions in the olfactory brain. Olfactory brain volume correlated with the volume of lesions in the olfactory brain and the EDSS score. The TST score correlated with the number and volume of lesions in the olfactory brain. CONCLUSION: The correlation between a higher number and volume of MS lesions with a decreased OB and olfactory brain volume could help to explain olfactory dysfunction

    Ξ±7-Nicotinic Acetylcholine Receptor: Role in Early Odor Learning Preference in Mice

    Get PDF
    Recently, we have shown that mice with decreased expression of Ξ±7-nicotinic acetylcholine receptors (Ξ±7) in the olfactory bulb were associated with a deficit in odor discrimination compared to wild-type mice. However, it is unknown if mice with decreased Ξ±7-receptor expression also show a deficit in early odor learning preference (ELP), an enhanced behavioral response to odors with attractive value observed in rats. In this study, we modified ELP methods performed in rats and implemented similar conditions in mice. From post-natal days 5–18, wild-type mice were stroked simultaneously with an odor presentation (conditioned odor) for 90 s daily. Control mice were only stroked, exposed to odor, or neither. On the day of testing (P21), mice that were stroked in concert with a conditioned odor significantly investigated the conditioned odor compared to a novel odor, as observed similarly in rats. However, mice with a decrease in Ξ±7-receptor expression that were stroked during a conditioned odor did not show a behavioral response to that odorant. These results suggest that decreased Ξ±7-receptor expression has a role in associative learning, olfactory preference, and/or sensory processing deficits

    Family-based clusters of cognitive test performance in familial schizophrenia

    Get PDF
    BACKGROUND: Cognitive traits derived from neuropsychological test data are considered to be potential endophenotypes of schizophrenia. Previously, these traits have been found to form a valid basis for clustering samples of schizophrenia patients into homogeneous subgroups. We set out to identify such clusters, but apart from previous studies, we included both schizophrenia patients and family members into the cluster analysis. The aim of the study was to detect family clusters with similar cognitive test performance. METHODS: Test scores from 54 randomly selected families comprising at least two siblings with schizophrenia spectrum disorders, and at least two unaffected family members were included in a complete-linkage cluster analysis with interactive data visualization. RESULTS: A well-performing, an impaired, and an intermediate family cluster emerged from the analysis. While the neuropsychological test scores differed significantly between the clusters, only minor differences were observed in the clinical variables. CONCLUSIONS: The visually aided clustering algorithm was successful in identifying family clusters comprising both schizophrenia patients and their relatives. The present classification method may serve as a basis for selecting phenotypically more homogeneous groups of families in subsequent genetic analyses

    The Shine-Through Masking Paradigm Is a Potential Endophenotype of Schizophrenia

    Get PDF
    BACKGROUND: To understand the genetics of schizophrenia, a hunt for so-called intermediate phenotypes or endophenotypes is ongoing. Visual masking has been proposed to be such an endophenotype. However, no systematic study has been conducted yet to prove this claim. Here, we present the first study showing that masking meets the most important criteria for an endophenotype. METHODOLOGY/PRINCIPAL FINDINGS: We tested 62 schizophrenic patients, 39 non-affected first-degree relatives, and 38 healthy controls in the shine-through masking paradigm and, in addition, in the Continuous Performance Test (CPT) and the Wisconsin Card Sorting Test (WCST). Most importantly, masking performance of relatives was significantly in between the one of patients and controls in the shine-through paradigm. Moreover, deficits were stable throughout one year. Using receiver operating characteristics (ROC) methods, we show that the shine-through paradigm distinguishes with high sensitivity and specificity between schizophrenic patients, first-order relatives and healthy controls. CONCLUSIONS/SIGNIFICANCE: The shine-through paradigm is a potential endophenotype

    Decreased olfactory discrimination is associated with impulsivity in healthy volunteers

    Get PDF
    In clinical populations, olfactory abilities parallel executive function, implicating shared neuroanatomical substrates within the ventral prefrontal cortex. In healthy individuals, the relationship between olfaction and personality traits or certain cognitive and behavioural characteristics remains unexplored. We therefore tested if olfactory function is associated with trait and behavioural impulsivity in nonclinical individuals. Eighty-three healthy volunteers (50 females) underwent quantitative assessment of olfactory function (odour detection threshold, discrimination, and identifcation). Each participant was rated for trait impulsivity index using the Barratt Impulsiveness Scale and performed a battery of tasks to assess behavioural impulsivity (Stop Signal Task, SST; Information Sampling Task, IST; Delay Discounting). Lower odour discrimination predicted high ratings in non-planning impulsivity (Barratt Non-Planning impulsivity subscale); both, lower odour discrimination and detection threshold predicted low inhibitory control (SST; increased motor impulsivity). These fndings extend clinical observations to support the hypothesis that defcits in olfactory ability are linked to impulsive tendencies within the healthy population. In particular, the relationship between olfactory abilities and behavioural inhibitory control (in the SST) reinforces evidence for functional overlap between neural networks involved in both processes. These fndings may usefully inform the stratifcation of people at risk of impulse-control-related problems and support planning early clinical interventions

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal β€œattention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia

    Association Analysis of 94 Candidate Genes and Schizophrenia-Related Endophenotypes

    Get PDF
    While it is clear that schizophrenia is highly heritable, the genetic basis of this heritability is complex. Human genetic, brain imaging, and model organism studies have met with only modest gains. A complementary research tactic is to evaluate the genetic substrates of quantitative endophenotypes with demonstrated deficits in schizophrenia patients. We used an Illumina custom 1,536-SNP array to interrogate 94 functionally relevant candidate genes for schizophrenia and evaluate association with both the qualitative diagnosis of schizophrenia and quantitative endophenotypes for schizophrenia. Subjects included 219 schizophrenia patients and normal comparison subjects of European ancestry and 76 schizophrenia patients and normal comparison subjects of African ancestry, all ascertained by the UCSD Schizophrenia Research Program. Six neurophysiological and neurocognitive endophenotype test paradigms were assessed: prepulse inhibition (PPI), P50 suppression, the antisaccade oculomotor task, the Letter-Number Span Test, the California Verbal Learning Test-II, and the Wisconsin Card Sorting Test-64 Card Version. These endophenotype test paradigms yielded six primary endophenotypes with prior evidence of heritability and demonstrated schizophrenia-related impairments, as well as eight secondary measures investigated as candidate endophenotypes. Schizophrenia patients showed significant deficits on ten of the endophenotypic measures, replicating prior studies and facilitating genetic analyses of these phenotypes. A total of 38 genes were found to be associated with at least one endophenotypic measure or schizophrenia with an empirical p-value<0.01. Many of these genes have been shown to interact on a molecular level, and eleven genes displayed evidence for pleiotropy, revealing associations with three or more endophenotypic measures. Among these genes were ERBB4 and NRG1, providing further support for a role of these genes in schizophrenia susceptibility. The observation of extensive pleiotropy for some genes and singular associations for others in our data may suggest both converging and independent genetic (and neural) pathways mediating schizophrenia risk and pathogenesis

    Processing of spatial-frequency altered faces in schizophrenia: Effects of illness phase and duration

    Get PDF
    Low spatial frequency (SF) processing has been shown to be impaired in people with schizophrenia, but it is not clear how this varies with clinical state or illness chronicity. We compared schizophrenia patients (SCZ, n534), first episode psychosis patients (FEP, n522), and healthy controls (CON, n535) on a gender/facial discrimination task. Images were either unaltered (broadband spatial frequency, BSF), or had high or low SF information removed (LSF and HSF conditions, respectively). The task was performed at hospital admission and discharge for patients, and at corresponding time points for controls. Groups were matched on visual acuity. At admission, compared to their BSF performance, each group was significantly worse with low SF stimuli, and most impaired with high SF stimuli. The level of impairment at each SF did not depend on group. At discharge, the SCZ group performed more poorly in the LSF condition than the other groups, and showed the greatest degree of performance decline collapsed over HSF and LSF conditions, although the latter finding was not significant when controlling for visual acuity. Performance did not change significantly over time for any group. HSF processing was strongly related to visual acuity at both time points for all groups. We conclude the following: 1) SF processing abilities in schizophrenia are relatively stable across clinical state; 2) face processing abnormalities in SCZ are not secondary to problems processing specific SFs, but are due to other known difficulties constructing visual representations from degraded information; and 3) the relationship between HSF processing and visual acuity, along with known SCZ- and medication-related acuity reductions, and the elimination of a SCZ-related impairment after controlling for visual acuity in this study, all raise the possibility that some prior findings of impaired perception in SCZ may be secondary to acuity reductions

    Emotional Cues during Simultaneous Face and Voice Processing: Electrophysiological Insights

    Get PDF
    Both facial expression and tone of voice represent key signals of emotional communication but their brain processing correlates remain unclear. Accordingly, we constructed a novel implicit emotion recognition task consisting of simultaneously presented human faces and voices with neutral, happy, and angry valence, within the context of recognizing monkey faces and voices task. To investigate the temporal unfolding of the processing of affective information from human face-voice pairings, we recorded event-related potentials (ERPs) to these audiovisual test stimuli in 18 normal healthy subjects; N100, P200, N250, P300 components were observed at electrodes in the frontal-central region, while P100, N170, P270 were observed at electrodes in the parietal-occipital region. Results indicated a significant audiovisual stimulus effect on the amplitudes and latencies of components in frontal-central (P200, P300, and N250) but not the parietal occipital region (P100, N170 and P270). Specifically, P200 and P300 amplitudes were more positive for emotional relative to neutral audiovisual stimuli, irrespective of valence, whereas N250 amplitude was more negative for neutral relative to emotional stimuli. No differentiation was observed between angry and happy conditions. The results suggest that the general effect of emotion on audiovisual processing can emerge as early as 200 msec (P200 peak latency) post stimulus onset, in spite of implicit affective processing task demands, and that such effect is mainly distributed in the frontal-central region
    • …
    corecore